2,085 research outputs found

    Olive water use and crop coefficients from energy balance and radiometric canopy temperatures

    Get PDF
    Biophysical and meteorological variables as well as radiometric canopy temperatures were collected in an intensive orchard near Évora, Portugal, with 28% ground cover by canopy and combined in a simplified two-source energy balance model (STSEB) to independently calculate the olive tree transpiration (T_STSEB) component of the total evapotranspiration (ETc). Sap flow observations were simultaneously taken in the same orchard allowing also for independent calculations of tree transpiration (T_SF). Model water use results were compared with water use estimates from the sap flow measurements. Good agreement was observed (R2=0.86, RMSE=0.20 mm d-1), with an estimation average absolute error (AAE) of 0.17 mm d-1. From June to August, on average olive water use were 1.92 and 1.89 mm d-1 for sap flow and STSEB model respectively, and 1.38 and 1.58 mm d-1 for the month of September. Results were also used to assess the olive basal crop coefficients (Kcb). Kcb estimates of 0.33 were obtained for sap flow and STSEB model, respectively, for June to August, and of 0.44 and 0.53 for the month of September. Basal crop coefficients were lower than the suggested FAO56 average Kcb values of 0.65 for June to August, the crop mid-season growth stage, and of 0.65 for the month of September, the end-season

    The Network of Epicenters of the Olami-Feder-Christensen Model of Earthquakes

    Full text link
    We study the dynamics of the Olami-Feder-Christensen (OFC) model of earthquakes, focusing on the behavior of sequences of epicenters regarded as a growing complex network. Besides making a detailed and quantitative study of the effects of the borders (the occurrence of epicenters is dominated by a strong border effect which does not scale with system size), we examine the degree distribution and the degree correlation of the graph. We detect sharp differences between the conservative and nonconservative regimes of the model. Removing border effects, the conservative regime exhibits a Poisson-like degree statistics and is uncorrelated, while the nonconservative has a broad power-law-like distribution of degrees (if the smallest events are ignored), which reproduces the observed behavior of real earthquakes. In this regime the graph has also a unusually strong degree correlation among the vertices with higher degree, which is the result of the existence of temporary attractors for the dynamics: as the system evolves, the epicenters concentrate increasingly on fewer sites, exhibiting strong synchronization, but eventually spread again over the lattice after a series of sufficiently large earthquakes. We propose an analytical description of the dynamics of this growing network, considering a Markov process network with hidden variables, which is able to account for the mentioned properties.Comment: 9 pages, 10 figures. Smaller number of figures, and minor text corrections and modifications. For version with full resolution images see http://fig.if.usp.br/~tpeixoto/cond-mat-0602244.pd
    corecore